Common Uses For Goto

Last time we looked at the goto statement. Today we will look at the two common uses for goto: flow control in nested loops and organizing error handing code.

Flow control

As we saw in previous weeks, the break and continue statements are used to modify the flow of execution in a loop. Both break and continue affect only the innermost enclosing loop. Sometimes you need to break out of nested loops. You could implement this with boolean flag values, but that approach can make your loop logic more convoluted and error prone. Instead, a goto statement can be used like break to jump out of nested loops:

for (int i = 0; i < 10; i++) {
  for (int j = 0; j < 10; j++) {
    if (...) {
      goto doneWithLoops;
    }
  }
}
doneWithLoops:
  // do more stuff

Similarly, you can use goto to emulate continue within nested loops, though keep in mind that goto doesn't automatically advance to the next item in a for or for...in loop the way continue does:

for (int i = 0; i < 10; i++) {
  start_j:
    for (int j = 0; j < 10; j++) {
      if (...) {
        i++; // manually advance loop counter to emulate continue
        goto start_j;
      }
    }
}

Along with its use in loops, the break statement is also used in the switch statement to mark the end of a case block. It's not uncommon to use a switch statement inside a loop when implementing simple state machines, event dispatchers and parsers:

// simple event dispatcher
MyEvent *event = nil;
while (event = getNextEvent()) {
  switch (event.type) {
    case KEY_EVENT:
      // handle key event
      break;
    case MOUSE_EVENT:
      // handle mouse event
      break;
  }
}
shutdown();

Sometimes you want to exit the event loop from within one of the case blocks, like this:

// simple event dispatcher
MyEvent *event = nil;
while (event = getNextEvent()) {
  switch (event.type) {
    case KEY_EVENT:
      // handle key event
      if (event.keycode == KEY_ESC) {
        // want to break out of the while loop
        // but a break here applies to the case block
      } else {
        // ...
      }
      break;
    case MOUSE_EVENT:
      // handle mouse event
      break;
  }
}
shutdown();

You can always use a boolean flag variable and make your loop test more complex, but using goto here can make your code simpler and easier to follow:

// simple event dispatcher
MyEvent *event = nil;
while (event = getNextEvent()) {
  switch (event.type) {
    case KEY_EVENT:
      // handle key event
      if (event.keycode == KEY_ESC) {
        goto event_loop_end;
      } else {
        // ...
      }
      break;
    case MOUSE_EVENT:
      // handle mouse event
      break;
  }
}
event_loop_end:
  shutdown();

Error handling


Standard C doesn't have a concept of throwing and catching exceptions; it's normal for functions in C libraries to return a result code to indicate an error (or to have an out parameter that holds a result code or error object). Writing robust programs using a C API requires checking result codes at each step and taking the appropriate action. For example, a function to copy a block of data from one file to another might look like this:

void copy_block(char const *in_filename, char const *out_filename, size_t block_size) {
  FILE *in_file = fopen(in_filename, "r");
  if (in_file) {
    FILE *out_file = fopen(out_filename, "w");
    if (out_file) {
      char *buffer = malloc(block_size);
      if (buffer) {
        int bytes_read = fread(buffer, 1, block_size, in_file);
        if (bytes_read > 0) {
          int bytes_written = fwrite(buffer, 1, bytes_read, out_file);
          if (bytes_written == bytes_read) {
            [[NSNotificationCenter defaultCenter] postNotificationName:@"Copy block completed successfully." object:nil];
          } else {
            [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to write to output file." object:nil];
          }
        } else {
          [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to read from input file." object:nil];
        }
        free(buffer);
      } else {
        [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to allocate buffer." object:nil];
      }
      fclose(out_file);
    } else {
      [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to open output file." object:nil];
    }
    fclose(in_file);
  } else {
    [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to open input file." object:nil];
  }
}

This leads to deeply nested "flock of geese" code that can be error prone and hard to read. One technique to deal with this is to return from the function when an error is encountered. The same code implemented that way looks like this:

void copy_block(char const *in_filename, char const *out_filename, size_t block_size) {
  FILE *in_file = fopen(in_filename, "r");
  if ( ! in_file) {
    [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to open input file." object:nil];
    return;
  }
  
  FILE *out_file = fopen(out_filename, "w");
  if ( ! out_file) {
    [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to open output file." object:nil];
    fclose(in_file); // clean up
    return;
  }
  
  char *buffer = malloc(block_size);
  if ( ! buffer) {
    [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to allocate buffer." object:nil];
    fclose(out_file); // clean up
    fclose(in_file);
    return;
  }
  
  int bytes_read = fread(buffer, 1, block_size, in_file);
  if (bytes_read <= 0) {
    [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to read from input file." object:nil];
    free(buffer); // clean up
    fclose(out_file);
    fclose(in_file);
    return;
  }
  
  int bytes_written = fwrite(buffer, 1, bytes_read, out_file);
  if (bytes_written != bytes_read) {
    [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to write to output file." object:nil];
    free(buffer); // clean up
    fclose(out_file);
    fclose(in_file);
    return;
  }
  
  [[NSNotificationCenter defaultCenter] postNotificationName:@"Copy block completed successfully." object:nil];
  
  // clean up
  free(buffer);
  fclose(out_file);
  fclose(in_file);
}

One criticism of this approach is that clean up code is duplicated repeatedly and in different variations, a violation of the DRY principle. Some programmers also prefer to have a single return point in a function. Using goto, you can centralize clean up code in one place in the function (and as a side effect, the function now has a single return point):

void copy_block(char const *in_filename, char const *out_filename, size_t block_size) {
  FILE *in_file = fopen(in_filename, "r");
  if ( ! in_file) {
    [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to open input file." object:nil];
    goto end;
  }
  
  FILE *out_file = fopen(out_filename, "w");
  if ( ! out_file) {
    [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to open output file." object:nil];
    goto clean_up_in_file;
  }
  
  char *buffer = malloc(block_size);
  if ( ! buffer) {
    [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to allocate buffer." object:nil];
    goto clean_up_files;
  }
  
  int bytes_read = fread(buffer, 1, block_size, in_file);
  if (bytes_read <= 0) {
    [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to read from input file." object:nil];
    goto clean_up_all;
  }
  
  int bytes_written = fwrite(buffer, 1, bytes_read, out_file);
  if (bytes_written != bytes_read) {
    [[NSNotificationCenter defaultCenter] postNotificationName:@"Unable to write to output file." object:nil];
    goto clean_up_all;
  }
  
  [[NSNotificationCenter defaultCenter] postNotificationName:@"Copy block completed successfully." object:nil];
  
  // clean up
  clean_up_all:
    free(buffer);
   
  clean_up_files:
    fclose(out_file);
  
  clean_up_in_file:
    fclose(in_file);
   
  end:
    return;
}

Please note that this is not a recommendation to always structure your error handling in this fashion using goto. This is simply one technique among many that you may encounter "in the wild" and which you may choose to use in the appropriate situation. When goto is used carefully and sparingly, it can help make difficult code cleaner and easier to follow, but unrestrained use of goto has the opposite effect. Whenever you're tempted to use goto in your own code, you should stop and see if you can break the code down into smaller functions or methods. Very often, refactoring a long function or method by extracting chunks of code into smaller functions or methods will do far more for you than a goto can.

Next time, a summary of looping and a new topic: variables.